

Welcome to ASKAP/CRAFT FRB Candidate Classifier’s Documentation!

Using the Web Application:

	Uploading FRB Events
	Running the Upload Script

	Radio Measurement YAML Format

	Observation YAML Format

Installation and Maintenance:

	Database Installation
	Dependancies

	Environment Variables

	Start the Postgres Database

	Setup database for the first time

	Create a superuser

	Delete Postgres Database

	Web Application Installation
	Opening the Nimbus Instance Firewall

	Goal 1: IP as URL

	Perimission errors

	Static files errors

	Try a simple domain

	Getting a ssl certificate

	Running Server
	Checking for errors and inspecting logs

	Starting the server

	Restarting the server

	Stopping the server

	Installing updates

Software Developer Documentation:

	Software Developer Documentation
	Uploading data

	Slack Integration

	Transient Name Server Integration

	VOEvent Integration

Uploading FRB Events

Running the Upload Script

To upload your FRB events and follow up measurements you can use this [https://github.com/ADACS-Australia/FRB_candidates_app/blob/main/frb_cand/upload_cand.py] python script.
To use it you must set the environment variables FRB_USER and FRB_PASS which is your username and password for the FRB web app [https://frb-classifier.duckdns.org/] account.

For the first detection/measurement of the FRB event, you can upload the radio measurement and observation data with a command like the following:

python upload_cand.py --first --radio_yaml radio_example.yaml --observation_yaml observation_example.yaml

Which will output an ID like so:

3

This should be recorded and used for future measurement updates (through post-processing and optical follow up).

To upload further measurements, use the update option like so:

python upload_cand.py --update 3 --radio_yaml radio_example.yaml

Note that you don’t need the observation YAML after the first detection.

Radio Measurement YAML Format

Here is an example of what the radio measurement YAML can look like

{
 # Only used for first detection/measurement
 "time_of_arrival": "2017-11-17T12:21:38.87",
 "repeater": true,
 "search_path": "example_search.png",
 "image_path" : "example_image.png",
 "histogram_path": "example_histogram.png",

 # Required
 "dm": 411.0,
 "dm_err": 1.0,
 "ra": 77.01461542,
 "ra_err": 0.05,
 "dec": 26.06069556,
 "dec_err": 0.05,
 "sn": 50,
 "width": 5,
 "flux": 35,
 "flux_err": 3,
 "source": "MB",
 "version": "v1.0",

 # Optional
 "fluence": 45,
 "fluence_err": 5,
 "dmism": 123.16007817568256,
 "rm": -613.0,
 "rm_err": 2.0,
 "cosmo": "Planck18",
 "eellipse": {
 "a": 0.004,
 "b": 0.004,
 "cl": 68.0,
 "theta": 0.0
 },
 "z": 0.0982,
}

Each of the keys:

	“time_of_arrival”: str, optional
	The time of arrival of the FRB in the format “%Y-%m-%dT%H:%M:%S.%f”, eg. “2017-11-17T12:21:38.87”

	“repeater”: boolean, optional
	Is the FRB a repeater (true or false)?

	“search_path”: str, optional
	The path to the search image

	“image_path”str, optional
	The path to the radio image

	“histogram_path”: str, optional
	The path to the histogram image

	“dm”float
	The dispersion measure of the FRB in pc / cm^3

	“dm_err”float
	The error of the dispersion measure of the FRB in pc / cm^3

	“ra”: str
	The Right Acension of the candidate in degrees

	“ra_err”: str
	The error of the Right Acension of the candidate in degrees

	“dec”: str
	The Declination of the candidate in degrees

	“dec_err”: str
	The error of the Declination of the candidate in degrees

	“sn”: float
	The signal-to-noise ration of the candidate

	“width”: float
	The width of the candidate pulse in ms

	“flux”: float, optional
	The flux density of the event in Jy

	“flux_err”: float, optional
	The error of the flux density of the event in Jy

	“source”: str
	The source (telescope pipeline) of the measurements, should be either MB (Multi-Beam) or HT (High-Time resolution)

	“version”: str
	The version of the “source” software

	“fluence”: float, optional
	The fluence of the event in Jy ms

	“fluence_err”: float, optional
	The error of the fluence of the event in Jy ms

	“dmism”float, optional
	The estimated amount of the dispersion measure that is contributed by the interstellar medium in pc / cm^3

	“rm”: float, optional
	The Rotation Measure of the candidate in rad / m^2

	“rm_err”: float, optional
	The error of the Rotation Measure of the candidate in rad / m^2

	“cosmo”: str, optional
	The cosmological model used for cosmological calculations, eg. “Planck18”

	“eellipse”: object, optional
	The error ellipse object which has the following keys within it

	“a”: float
	The width of the ellipse in degrees

	“b”: float
	The height of the ellipse in degrees

	“cl”: float, optional
	The confidence level of the error ellipse in percent. Default 68.0

	“theta”: float
	The angle in degrees from North clockwise

	“z”: boolean, optional
	The redshift of the candidate

Observation YAML Format

Here is an example of what the observation YAML can look like

{
 "beam_semi_major_axis": 0.2,
 "beam_semi_minor_axis": 0.3,
 "beam_rotation_angle": 45,
 "sampling_time": 0.1,
 "bandwidth": 300,
 "nchan": 3000,
 "centre_frequency": 1400,
 "npol": 2,
 "bits_per_sample": 8,
 "gain": 3,
 "tsys": 50,
 "backend": "Multibeam",
 "beam": 1,
}

	“beam_semi_major_axis”: float
	The beam semi major axis in arcminutes.

	“beam_semi_minor_axis”: float
	The beam semi minor axis in arcminutes.

	“beam_rotation_angle”: int
	The beam rotation angle in degrees, clockwise from North.

	“sampling_time”: float
	The duration of each sample in ms.

	“bandwidth”: float
	The bandwidth in MHz.

	“nchan”: int
	The number of frequency channels.

	“centre_frequency”: float`
	The centre frequency in MHz.

	“npol”: int
	The number of antena polarisations.

	“bits_per_sample”: int
	The size in bits of each sample.

	“gain”: float
	The gain of telescope in K/Jy.

	“tsys”: float
	The system temperature in K.

	“backend”: string
	The name of the telescope backend being used (“Multibeam” for example).

	“beam”: int
	The beam number for multi beam receivers.

Database Installation

Dependancies

For Ubuntu or Debian Linux:

sudo apt-get update
sudo apt-get install postgresql postgresql-contrib libpq-dev python3-dev graphviz python3-pip

Then install the python requirements (recommended in its own virtual environment) using:

pip install -r frb_cand/requirements.txt

Environment Variables

To run the web application, you will need to set the following environment variables:

	Variable

	Description

	DB_USER

	Postgres user name which you will set in the next section.

	DB_PASSWORD

	Postgres password which you will set in the next section.

	DB_SECRET_KEY

	Django secret key. Here [https://saasitive.com/tutorial/generate-django-secret-key/] is a description of how to generate one.

	SYSTEM_ENV

	Set this either to ‘PRODUCTION’ to turn off debug and enable CSRF_COOKIE_SECURE, or ‘DEVELOPMENT’ to turn on debug

	UPLOAD_USER

	A username of an account that will be used by upload_xml.py to upload VOEvents

	UPLOAD_PASSWORD

	The password of the upload user

Start the Postgres Database

The following commands will set up the Postgres database for the web app. Replace $DB_USER and $DB_PASSWORD with the environment variable values.

sudo -u postgres psql

CREATE DATABASE frb_cand_db;
CREATE USER $DB_USER WITH ENCRYPTED PASSWORD '$DB_PASSWORD';

ALTER ROLE $DB_USER SET client_encoding TO 'utf8';
ALTER ROLE $DB_USER SET default_transaction_isolation TO 'read committed';
ALTER ROLE $DB_USER SET timezone TO 'UTC';

Setup database for the first time

Run the following commands from the webapp_tracet subdirectory so Django can setup up the database structure and upload defaults

python manage.py migrate
python manage.py migrate --run-syncdb

Create a superuser

These commands will set up a superuser account.

python manage.py createsuperuser

Delete Postgres Database

Only do this is you want to restart the database!

To delete the database use the following commands

sudo -u postgres psql

DROP DATABASE frb_cand_db;
CREATE DATABASE frb_cand_db;

You will then have to recreate the database using the commands in Setup database for the first time

Web Application Installation

The following are instructions on how to setup up your nimbus instance for the first time. If you have already done this you can skip to Starting the server.

Opening the Nimbus Instance Firewall

Once you’ve set up the instance you need to open the firewall

https://support.pawsey.org.au/documentation/display/US/Allow+HTTPS+Access+To+Your+Instance

Then make a costum tcp rule for ports 80 and 443, should look like this

[image: _images/nimbus_example.png]
Then follow this guide to check things step by step

https://uwsgi-docs.readthedocs.io/en/latest/tutorials/Django_and_nginx.html

The following is examples of how I got it to work.

Goal 1: IP as URL

First try and get it to work with the nimbus IP as the URL. From directory containing manage.py run the command:

uwsgi --socket frb-classifier.sock --module frb_cand.wsgi --chmod-socket=666

and nginx should look like this

upstream django {
 server unix:///home/ubuntu/FRB_candidates_app/frb_cand/frb-classifier.sock;
}

server {
 listen 80;
 server_name <IP>;
 charset utf-8;

 # max upload size
 client_max_body_size 75M;

 location /static {
 alias /home/ubuntu/FRB_candidates_app/frb_cand/static_host;
 }

 # Finally, send all non-media requests to the Django server.
 location / {
 uwsgi_pass django;
 include /home/ubuntu/FRB_candidates_app/frb_cand/uwsgi_params;
 }

}

and make sure the IP is in allowed hosts in settings.py:

ALLOWED_HOSTS = ['127.0.0.1', 'localhost', '<IP>']

Check if the works by using the IP as a URL in your browser.

Perimission errors

If you get a (13: Permission denied) error in the nginx logs here is a helpful fix

https://stackoverflow.com/questions/25774999/nginx-stat-failed-13-permission-denied

Static files errors

If it’s not finding the static files then setup the setting.py like this

STATIC_URL = '/static/'
STATICFILES_DIRS = (
 os.path.join(BASE_DIR, "static/"),
)
STATIC_ROOT = os.path.join(BASE_DIR, "static_host/")

then run

python manage.py collectstatic

and update the nginx to

location /static {
 alias /home/ubuntu/FRB_candidates_app/frb_cand/static_host;
}

Try a simple domain

Grab a free subdomain from https://www.duckdns.org/domains that points to your ip then update the url in nginx’s severname, and ALLOWED_HOSTS in settings.py

Getting a ssl certificate

Here are instructions on generating a ssl certificate

https://certbot.eff.org/instructions?ws=nginx&os=ubuntufocal

Running Server

Checking for errors and inspecting logs

nginx errors are in

tail -f cat /var/log/nginx/error.log

All commands assume you’re in the frb_cand sub directory. You can see the output of the server with

tail -f uwsgi-emperor.log

Starting the server

Start the uwsgi server with

uwsgi --ini frb_cand_uwsgi.ini

This will run in the background and the following sections describe how to restarting and stopping the server.

Restarting the server

kill -HUP `cat /tmp/project-master.pid`

Stopping the server

uwsgi --stop /tmp/project-master.pid

Installing updates

If the updates are small normally something as simple as the following will suffice:

git pull
kill -HUP `cat /tmp/project-master.pid`

Larger updates may need a combination of the following commands

git pull
Stop server
uwsgi --stop /tmp/project-master.pid
Check for new dependent software
pip install -r requirements.txt
Check for new static files
python manage.py collectstatic
Make any required changes to the backend database
python manage.py makemigrations
python manage.py migrate
Start server
uwsgi --ini frb_cand_uwsgi.ini

Software Developer Documentation

Uploading data

Users will upload data to the database with the upload_cand.py script, which parses input YAML files and puts the data into the relevant tables.
The triggered steps are handled using signals.py, which will be explained in the next sections.

Slack Integration

Each time a new FRBEvent is created, the slack_trigger and slack_event_post functions in signals.py
will be triggered and send off a Slack message describing the event.
This is done in the slack_event_post view, which makes a block for each image and two response buttons.

The Slack App that handles this is frb_cand [https://craft-askap.slack.com/apps/A046XKC9J2X-frb-cand?tab=settings&next_id=0]
which posts to the private channel nick_frb_cand_testing currently.
This is sent to slack using a webhook URL, which should be set in the settings.ini and changed
here [https://api.slack.com/apps/A046XKC9J2X/incoming-webhooks] (if you have permissions).

This could be changed in production, or making a separate app for production may be more manageable.
The required permissions are

	Post messages to specific channels in Slack

	View basic information about public channels in a workspace

	Send messages as @frbcand (or whatever the new app name is)

	Post messages to a private group

The buttons will return a JSON dump to the web app through the slack_get_rating view.
The URL for the app is set within the Interactivity & Shortcuts [https://api.slack.com/apps/A046XKC9J2X/interactive-messages?]
settings page for the app (currently https://frb-classifier.duckdns.org/slack_get_rating/).
The JSON is parsed, and the rating is recorded in the database and with a slack message.

Transient Name Server Integration

The TNS has a production version (https://www.wis-tns.org/) and a testing version (https://sandbox.wis-tns.org/) of the site.
We currently only use the testing sandbox version. There is some documentation [https://www.wis-tns.org/content/tns-getting-started] but it is lacking for the FRB API.

We only submit the first FRB radio measurement to the TNS.
It submits the FRBEvent with the submit_frb_to_tns view, which dumps a JSON the TNS CRAFT_bot and then waits for a response that contains the transient name.
We then record this name in the database.

You should have access to the CRAFT_bot as long as you have access to the CRAFT TNS group.
You can request an invite to the CRAFT TNS group from Ryan Shannon.

Sometimes the API stops working, but updating the API key fixes it.
Go to the Edit CRAFT_bot page [https://sandbox.wis-tns.org/node/143623/edit?destination=bots]
and tick “Create new API Key” and click save.
Copy the key it outputs into the TNS_API_KEY in the settings.ini and restart the server.

VOEvent Integration

Currently, we only locally (not to a broker) submit VOEvents for the first radio detection (no follow-ups or event withdrawals).
make_voevent in signals.py creates the VOEvent using voevent-parse [https://voevent-parse.readthedocs.io/en/stable/index.html]
and using this [https://github.com/ebpetroff/FRB_VOEvent/blob/master/templates/01-Detection.xml] template.
It then submits the event using comet-sendvo and records it in the database.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to ASKAP/CRAFT FRB Candidate Classifier’s Documentation!

 		
 Uploading FRB Events

 		
 Running the Upload Script

 		
 Radio Measurement YAML Format

 		
 Observation YAML Format

 		
 Database Installation

 		
 Dependancies

 		
 Environment Variables

 		
 Start the Postgres Database

 		
 Setup database for the first time

 		
 Create a superuser

 		
 Delete Postgres Database

 		
 Web Application Installation

 		
 Opening the Nimbus Instance Firewall

 		
 Goal 1: IP as URL

 		
 Perimission errors

 		
 Static files errors

 		
 Try a simple domain

 		
 Getting a ssl certificate

 		
 Running Server

 		
 Checking for errors and inspecting logs

 		
 Starting the server

 		
 Restarting the server

 		
 Stopping the server

 		
 Installing updates

 		
 Software Developer Documentation

 		
 Uploading data

 		
 Slack Integration

 		
 Transient Name Server Integration

 		
 VOEvent Integration

_static/plus.png

_static/file.png

_static/minus.png

_images/nimbus_example.png
Displaying 4 tems

O Direction
0 Egess
0 Egess
O ingess
O ingess

Displaying 4 tems

Ether Type

IPva

IPve

IPva

IPva

1P Protocol

Tcp

Tcp

Port Range

Any

Any

80 (HTTP)

443 (HTTPS)

Remote IP Prefix

0.00.000

0.00.000

0.00.000

Remote Security Group

